If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-3x-10=6x
We move all terms to the left:
x^2-3x-10-(6x)=0
We add all the numbers together, and all the variables
x^2-9x-10=0
a = 1; b = -9; c = -10;
Δ = b2-4ac
Δ = -92-4·1·(-10)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-11}{2*1}=\frac{-2}{2} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+11}{2*1}=\frac{20}{2} =10 $
| 6(2^x-3)=256 | | y-34=76 | | 2k-9=24 | | y+34=76 | | 2a-7+3a=20 | | a+166=680 | | 11/30=x/100 | | H(3h-4)=0 | | 4a-5=41 | | 13x-3+88°+80°=360 | | 16z−11z=5 | | 10x-9=4x-3 | | 3(4=4x)=12x+12 | | 6(x+3)=5x+8=3x | | 13x-3=360 | | m+16=25 | | y+47=52 | | −2b2=−8b+8 | | 16x-(7x+25)*2=18 | | ((6x+2)+(10x-20))/2=(7x+25) | | (-5y+65)^2+y^2=169 | | (16x-18)/2=(7x+25) | | (8x+6)+(5x+14)+(14x+9)=180 | | (6x+2)+(10x-20)=(7x+25)/2 | | 4x²-5x-3=0 | | 0=4x²-5x-3 | | 0.6(6c-18)+0.75(8c+32)=-18 | | 10x+11=11x-7 | | 11x+6=6x+16 | | X/2-x+4/7=3 | | 2x+42+3x-9=180 | | 4x+15+45=180 |